- Upto 10 watts pep on lower HF bands, dips to 5 watts on 28 MHz
- SSB and CW
- Simple to build and align
- Minimal controls
- Based on Arduino Nano controller and a Si5351 for all local oscillators
- Double conversion, superhet architecture
- It can be scratch built for less than $50 or you can just buy the kit
Click here for (v3) uBITX | (v4) uBITX | v5 uBITX
Homebrewers have traditionally avoided making multiband transceivers as they can get extremely complex and difficult to make. There have been some remarkable successes in the past, the CDG2000 (designed by Colin Horrabin G3SBI, Dave Roberts G8KBB and George Fare G3OGQ) is one such design. The Software Defined Radio (SDR) route as followed by several designs offer some simplification at the cost of bringing digital signal processing and a PC into the signal path.
On the other hand, many of the homebrewers do need a general coverage transceiver on the bench as well as as a base transceiver for bands beyond the HF. I ended up buying an FT-817ND that has been a reliable old warhorse for years. A few years ago, I attempted a high performance, multi-band architecture with the Minima transceiver. The KISS mixer of the Minima, though a very respectable receiver front-end, had serious leakage of the local oscillator that caused that design to be abandoned as a full transceiver. Over months, I realized that the need for a general coverage HF transceiver was wide-spread among the homebrewers. Most of us simply end up buying one. While achieving competition-grade performance from a multiband homebrew transceiver is a complex task, as evidenced by the works like that of HBR2000 by VE7CA, it is not at all difficult to achieve a more modest design goal with far lesser complexity. The µBITX aims to fulfill such a need. It is a compact, single board design that covers the entire HF range with a few minor trade-offs. This rig has been in regular use on forty and twenty meters for a year at VU2ESE. It satisfies for regular work, a few trips to the field as well. A key challenge for multiband transceivers has been to realize a local oscillator system with such wide range. Silicon Labs has now produced a series of well-performing oscillators that solve this challenge trivially : You connect the oscillator chip over a pair of I2C lines and it is done. The Si5351a/b/c are one such a family of parts that provides 3 programmable oscillator outputs in a small 10 pin TSSOP package. We exploit this chip to build the multiband transceiver. Having exclusively used homebrew transceivers all the time, I get very confused whenever I need to use a commercial radio. There are too many switches, modes and knobs to twirl around. The µBITX use an Arduino to simplify the front panel while retaining all the functionality in a simple menu system that works with the tuning knob and a single function button. The rig supports two VFOs, RIT, calibration, CW semi break-in, meter indicator, etc. In future, more software can be added to implement keyer, SWR display, etc.The Circuit Description
A contemporary approach to multiband superhet radio is to upconvert the entire spectrum of interest (0.5 to 30 Mhz) to much higher intermediate frequency that is at least 1-½ times the highest frequency of interest (for us that would be 45 MHz). Though narrow band SSB filters are available at 45 MHz, they are do not have a good response in addition to being costly and difficult to obtain. Hence, we choose to an inexpensive, though 15 KHz wide, 2 pole 45 MHz filter as a roofing filter. This filter sets the wide-range IMD of the receiver. To tune from 0 to 30 MHz, the first oscillator tunes from 45 MHz to 75 Mhz. Accordingly, the IF images will be from 90 MHz to 125 MHz. These are easily stripped away by a 4-section, low pass filter in the front-end. A higher first Intermediate Frequency could have resulted in even better image rejection. The second IF of 11.059 MHz allows for a very reasonable SSB bandwidth filter. We use 8 well-matched low cost crystals to obtain a very smooth filter. Some CW operators may also want to add a second narrow band filter for CW work, more on this when we discuss the CW mode. Here is the block diagram of the µBITX :
Low Pass filter at 30 MHz

1st Conversion

- The L31, C205, L32 together form a single low pass filter that attenuates the 2nd harmonic of 45 MHz from getting into the diode mixer (during the transmit state). This cures the spurs that were reported in earlier versions.
- A preamp would have been necessary if the front-end had a higher loss band pass filters.
- The low pass filter has a loss of about 1 db, eliminating the need for a preamp to follow it.
- The diode mixer is a standard issue doubly balanced mixer. Version built with 1N4148 as well as BAT54S (a very inexpensive, useful part that has two matched diodes in a single SMD package) work equally well. The diode mixer has a DC bias that can be raised to unbalance it and allow CW operation (more about it later)
- The mixer is fed from clock#2 of the Si5351 through an attenuation pad. The pad provides proper termination to the Si5351 and a proper drive to the diode mixers.
- it provides necessary gain to overcome the losses in the following 45 MHz band pass filter,
- it provides proper broadband termination to the mixer at all HF frequencies,
- it provides proper driving impedance for the 45 MHz band pass filter.
45 MHz Band Pass Filter
A low cost two-pole 45 MHz crystal filters are now widely available from online sources. We used this to eliminate the guess work with tuning a band pass filter and also to provide better selectivity early in the transceiver’s signal path. The 45 MHz filter needs 500 ohms termination impedance on both ports. We use simple L network to match the filter to either ends of the front-end and the 2nd IF mixer. Note: We had use a series tuned, three section band pass filter at 45 MHz for the prototype. This filter was been purposefully kept a little broad to eliminate the need to tune it. Experimentally inclined scratch-builders may choose to use air core coils with proper shielding for this stage.2nd Conversion
The second RF mixer down converts the 45 MHz IF to 11.059 MHz. Earlier versions had the second IF at 12 Mhz, this is moved to 11.059 MHz to avoid spurs from the microcontroller. It uses another standard issue double-balanced diode mixer followed by another clone of the RF amplifier used in the front-end. To invert the sideband between USB and LSB, the second oscillator is switched between 33 MHz and 57 MHz. This is controlled by the µBITX software.11.059 MHz SSB filter

(De)Modulator
The post filter signal is strong enough to not need an IF amplifier, so we directly take it to a balanced (de)modulator made out of two matched diodes. It is important to use matched diodes here as the same circuit is also used to modulate during transmission. Balance controls are pesky circuits, they are easily unbalanced and setting them properly is more difficult than finding two diodes with the same forward resistance and soldering in the pair. An easier option it to just order a small strip of the inexpensive BAT54S which come as pre-matched pair for a few pennies each. We use the remaining CLK#0 output of the Si5351 to drive the BFO. The carrier is permanently fixed to generate upper sideband signal. The sideband is inverted by flipping the second oscillator between 33 MHz and 56 MHz. When the second oscillator is at 34 MHz, the upper sideband propagates either way without inversion as 33 + 11 = 45 MHz. When the second oscillator is at 56 MHz, the 45 MHz is generated as 56-11 = 45 MHz. Note that in the second case, the 45 MHz signal will decrease in frequency as the 11 MHz signal is subtracted from 56 MHz, thus achieving sideband inversion. A few minutes of pencil and paper work will be required to figure out how this works.Audio
Transmitting
The transmission is really the same signal flow in the reverse direction. The mic has a bias resistor to allow for electret microphones. The output at the low pass filter is about -10dbm. The transmit power chain has a two 2N3904 broad band class A amps that boost the power to about +13 dbm level.
Software Description
The Arduino source code for the µBITX is available on https://github.com/afarhan/ubitxv6 The Arduino works with a common 320×240 TFT display using the ILI9341 display controller and an Si5351A. The software controls the oscillator, implements two VFOs, and provides a calibration routine. The code is always changing so it may do things not mentioned here.Operating the Radio

- VFOs The VFOs A and B are switch by simply touching on either of them. The white box shows the currently active VFO
- RIT Touch the RIT to enable Receiver Incremental Tuning. Touch it again to turn it off
- USB/LSB Touch on either of the buttons to choose the sideband
- CW Touch to enable CW mode. In CW mode, you can also use your microphone’s PTT for a transmitting a quick morse code message. Choose your keyer from the setup menu
- SPL(IT). Touch to enable Split operating. Now, the VFO A becomes the transmitting frequency and the VFO B is the receiving frequency. It is great for working DX!
- Bands Touch on any band buttons to quickly switch to the band
- WPM (CW) Set the CW sending speed of the keyer
- TON(E) Set the sidetone frequency
- FRQ Allows you to enter a frequency directly using a keypad shown below:
- If you tap on the tuning control, you can move the focus on the screen from one box to another. Tapping the tuning control again will simulate pressing that button.
- If you tap on one of the VFOs, Fast tuning gets enabled where each step of the tuning encoder results in a jump of 50 KHz. Use this method for quickly getting from one frequency to another.
- The radio switches automatically to LSB when operating below 10 MHz.
- To operate CW, the setup menu allows you to chose between Iambic A, Iambic B and a straight (hand) key.
- The second oscillator and the BFO as disabled
- The first oscillator is moved to the actual transmit frequency
- A DC bias is fed to the first mixer to upset the balance and allow the first oscillator to leak to the RF power chain.
- The CW sidetone is generated from the Arduino and injected into the audio amplifier

- The bandpass filter and the low pass filter are kept at right angles to each other to reduce coupling
- The Si5351a clocks should have very short leads going to their respective mixers and they should be away each other as well as from any power leads to prevent leakage of their RF into the transmit path.
- The transmit low pass filters are mount as way from the low pass filters as possible.
Coil Details
- L5, L7 : 12 turns on T30-6
- L1, L2, L3, L4, L11, L12, L13 : 9 turns on T30-6
- L14, L15, L16: 10 turns on T30-6
- L14, L15, L16: 14 turns on T30-6
- L20, L21, L22: 19 turns on T30-6
Improvements
- Broadcast filter If there are powerful Medium wave or LF transmitters in the immediate vicinity of your QTH, it will make sense to add a high pass filter with a cut-off around 1.6 MHz to keep these out of the front-end.
- Better IF system An IF derived AGC with sufficient gain control, a selection of another narrow band filter can easily add a lot of street cred to this little radio. The hybrid cascode amplifier described by Hayward and Damm is highly recommended.
- VHF/UHF coverage With the 45 MHz IF, it is trivial to build band-pass filters with microstriplines for 144 MHz, 220 MHz and 432 Mhz frequencies. The Si5351’s clock may not high enough for the first conversion directly at 432 Mhz but a sub-harmonic mixer that works with only half the local oscillator frequency can easily scale this rig for VHF/UHF work. MMICs like the MAR6 series and power modules from Mitsubishi can easily scale this radio to reasonable performance level for weak signal and satellite work.